Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.348
Filter
1.
J Forensic Odontostomatol ; 42(1): 2-11, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38742567

ABSTRACT

INTRODUCTION: Human Identification based on dental evidence cannot be accomplished if antemortem dental records are unavailable or of poor quality. The involvement of the orthodontist in mass disaster victim identification processes may be crucial in relation to the amount and quality of the records which can be obtained before, during, and following the treatment. AIM: The aim of the study is the description of the contribution of the findings drawn from orthodontic records to the identification of victims of mass disasters who had received an orthodontic treatment, through the presentation of two cases. The first case involves the identification of a child victim of a plane crash and the second case involves the identification of two identical twin girls who died in a fire. In both cases, the identification was based on the findings obtained from the ante-mortem records provided by the orthodontist. CONCLUSIONS: The orthodontists apply customized orthodontic appliances and keep a comprehensive file of images, casts, radiographs, and other records in their practice. As a result, they can make a substantial contribution to the identification of young people or even adult victims of mass disasters in any case in which the authorities make a request.


Subject(s)
Forensic Dentistry , Humans , Female , Child , Forensic Dentistry/methods , Fires , Dental Records , Mass Casualty Incidents , Orthodontics , Disasters
2.
Sci Justice ; 64(3): 305-313, 2024 May.
Article in English | MEDLINE | ID: mdl-38735667

ABSTRACT

Heat-induced fractures can be hard to distinguish from sharp force traumas. This challenge can negatively impact medico-legal analysis. The present study aimed to experimentally assess if X-ray fluorescence (XRF) can be used to detect chemical traces transferred from the blade of a sharp instrument onto both fresh and dry human bones. This was performed by inducing sharp force traumas with five different instruments on 20 fresh and 20 dry human clavicles. All bone samples were probed before and after experimental burning (at 500 °C, 700 °C, 900 °C and 1100 °C). Our results show that XRF is potentially useful for detecting iron traces in fresh human bone, both unburned and burned. However, we were not able to clearly detect iron traces from the blades in bones that have been previously inhumed, since exogenous iron acquired during diagenesis masks the iron traces originating from the blade.


Subject(s)
Hot Temperature , Iron , Humans , Iron/analysis , Spectrometry, X-Ray Emission , Fractures, Bone , Burns , Fires , Male
3.
Glob Chang Biol ; 30(4): e17278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38655695

ABSTRACT

The increasing frequency and severity of human-caused fires likely have deleterious effects on species distribution and persistence. In 2020, megafires in the Brazilian Pantanal burned 43% of the biome's unburned area and resulted in mass mortality of wildlife. We investigated changes in habitat use or occupancy for an assemblage of eight mammal species in Serra do Amolar, Brazil, following the 2020 fires using a pre- and post-fire camera trap dataset. Additionally, we estimated the density for two naturally marked species, jaguars Panthera onca and ocelots Leopardus pardalis. Of the eight species, six (ocelots, collared peccaries Dicotyles tajacu, giant armadillos Priodontes maximus, Azara's agouti Dasyprocta azarae, red brocket deer Mazama americana, and tapirs Tapirus terrestris) had declining occupancy following fires, and one had stable habitat use (pumas Puma concolor). Giant armadillo experienced the most precipitous decline in occupancy from 0.431 ± 0.171 to 0.077 ± 0.044 after the fires. Jaguars were the only species with increasing habitat use, from 0.393 ± 0.127 to 0.753 ± 0.085. Jaguar density remained stable across years (2.8 ± 1.3, 3.7 ± 1.3, 2.6 ± 0.85/100 km2), while ocelot density increased from 13.9 ± 3.2 to 16.1 ± 5.2/100 km2. However, the low number of both jaguars and ocelots recaptured after the fire period suggests that immigration may have sustained the population. Our results indicate that the megafires will have significant consequences for species occupancy and fitness in fire-affected areas. The scale of megafires may inhibit successful recolonization, thus wider studies are needed to investigate population trends.


A crescente frequência e gravidade dos incêndios causados pelo homem provavelmente terão efeitos deletérios na distribuição e persistência das espécies. Em 2020, mega incêndios no Pantanal brasileiro queimaram 43% do bioma e resultaram na mortalidade em massa da vida selvagem. Nós investigamos mudanças no uso ou ocupação do habitat para uma comunidade de oito espécies de mamíferos na Serra do Amolar, Brasil, após os incêndios de 2020, usando um conjunto de dados de armadilhas fotográficas instaladas no período pré e pós­fogo. Além disso, estimamos a densidade de duas espécies naturalmente marcadas, a onça­pintada Panthera onca e a jaguatirica Leopardus pardalis. Das oito espécies, seis (a jaguatirica, o cateto Dicotyles tajacu, o tatu­canastra Priodontes maximus, a cutia Dasyprocta azarae, o veado mateiro Mazama americana e a anta Tapirus terrestris) tiveram ocupação reduzida após os incêndios, e uma teve uso de habitat estável (a onça­parda, Puma concolor). O tatu­canastra apresentou o declínio mais acentuado na ocupação após os incêndios de 0,431 ± 0,171 para 0,077 ± 0,044. A onça­pintada foi a única espécie com uso crescente de habitat, de 0,393 ± 0,127 para 0,753 ± 0,085. A densidade da onça­pintada permaneceu estável ao longo dos anos (2,8 ± 1,3, 3,7 ± 1,3, 2,6 ± 0,85/100 km2), enquanto a densidade da jaguatirica aumentou de 13,9 ± 3,2 para 16,1 ± 5,2/100 km2. No entanto, o baixo número de onças­pintadas e jaguatiricas recapturadas após o período do fogo sugere que a imigração pode ter sustentado as populações. Nossos resultados indicam que os mega incêndios terão consequências significativas para a ocupação e resiliência das espécies nas áreas afetadas pelo fogo. A escala dos mega incêndios pode inibir uma recolonização bem­sucedida, pelo que são necessários estudos mais amplos para investigar as tendências populacionais.


Subject(s)
Ecosystem , Animals , Brazil , Mammals/physiology , Population Dynamics , Fires , Population Density , Wildfires
4.
Bull Math Biol ; 86(5): 51, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581579

ABSTRACT

Forest plantations are economically and environmentally relevant, as they play a key role in timber production and carbon capture. It is expected that the future climate change scenario affects forest growth and modify the rotation age for timber production. However, mathematical models on the effect of climate change on the rotation age for timber production remain still limited. We aim to determine the optimal rotation age that maximizes the net economic benefit of timber volume in a negative scenario from the climatic point of view. For this purpose, a bioeconomic optimal control problem was formulated from a system of Ordinary Differential Equations (ODEs) governed by the state variables live biomass volume, intrinsic growth rate, and area affected by fire. Then, four control variables were associated to the system, representing forest management activities, which are felling, thinning, reforestation, and fire prevention. The existence of optimal control solutions was demonstrated, and the solutions of the optimal control problem were also characterized using Pontryagin's Maximum Principle. The solutions of the model were approximated numerically by the Forward-Backward Sweep method. To validate the model, two scenarios were considered: a realistic scenario that represents current forestry activities for the exotic species Pinus radiata D. Don, and a pessimistic scenario, which considers environmental conditions conducive to a higher occurrence of forest fires. The optimal solution that maximizes the net benefit of timber volume consists of a strategy that considers all four control variables simultaneously. For felling and thinning, regardless of the scenario considered, the optimal strategy is to spend on both activities depending on the amount of biomass in the field. Similarly, for reforestation, the optimal strategy is to spend as the forest is harvested. In the case of fire prevention, in the realistic scenario, the optimal strategy consists of reducing the expenses in fire prevention because the incidence of fires is lower, whereas in the pessimistic scenario, the opposite is true. It is concluded that the optimal rotation age that maximizes the net economic benefit of timber volume in P. radiata plantations is 24 and 19 years for the realistic and pessimistic scenarios, respectively. This corroborates that the presence of fires influences the determination of the optimal rotation age, and as a consequence, the net economic benefit.


Subject(s)
Fires , Forests , Fires/prevention & control , Mathematical Concepts , Models, Biological
5.
Proc Natl Acad Sci U S A ; 121(17): e2307216121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621126

ABSTRACT

Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.


Subject(s)
Butterflies , Fires , Animals , Ecosystem , Soil , Forests , Trees , Biodiversity
6.
PLoS One ; 19(4): e0299940, 2024.
Article in English | MEDLINE | ID: mdl-38620031

ABSTRACT

Injecting carbon dioxide is the most effective means of preventing and extinguishing fires in sealing hazardous areas, but the traditional method slowly and remotely injects carbon dioxide gas into the well after gasification on the ground, which is dependent on the complete mine pipe network without cooling effect. To inject liquid directly from the tank with vacuum interlayer and heat insulating powder for rapid inerting and cooling, a new approach using track mobile platform to go deep into the underground mine disaster area is proposed, so the liquid can be delivered to the nozzle at the end of DN40 large diameter pipe, and the continuous gasification jet can be realized. The experimental results show that: (1) The liquid volume in a tank of vacuum degree within 2.0 Pa and 200 mm interlayer reduced no more than 15.5% after 48 days; (2) Taking the pressure in the tank as the power source, because of environmental differences inside and outside the pipe after 100 m pressure holding delivery, the physical form of liquid and gas could be converted instantly; (3) The continuous discharge time without ice blocking for a tank full of 2 m3 liquid was about 10.5 min under 25 L dual mode nitrogen pressurization, which is 1/12 of injection time after ground gasification; (4) Based on the temperature decrease trend measured at different positions, the cooling characteristics on liquid gasification jet path are quantified, and the calculation formula of temperature changing with time on the center line of liquid gasification jet is obtained. Through this new approach, the integration of vacuum insulated storage, safe mobile transportation, and continuous and rapid release with large flow can be achieved for the liquid carbon dioxide.


Subject(s)
Carbon Dioxide , Fires , Fires/prevention & control , Nitrogen , Hot Temperature , Cold Temperature
7.
Environ Sci Technol ; 58(15): 6716-6724, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38573586

ABSTRACT

Wildfires in Australia have attracted extensive attention in recent years, especially for the devastating 2019-2020 fire season. Remote forcing, such as those from tropical oceans, plays an important role in driving the abnormal weather conditions associated with wildfires. However, whether high latitude climate change can impact Australian fires is largely unclear. In this study, we reveal a robust relationship between Antarctic sea ice concentration (SIC), primarily over the Amundsen Sea region, with Australian springtime fire activity, by using reanalysis data sets, AMIP simulation results, and a state-of-the-art climate model simulation. Specifically, a diminished Amundsen SIC leads to the formation of a high-pressure system above Australia as a result of the eastward propagation of Rossby waves. Meanwhile, two strengthened meridional cells originating from the tropic and polar regions also enhance subsiding airflow in Australia, resulting in prolonged arid and high-temperature conditions. This mechanism explains about 28% of the variability of Australian fire weather and contributed more than 40% to the 2019 extreme burning event, especially in the eastern hotspots. These findings contribute to our understanding of polar-low latitude climate teleconnection and have important implications for projecting Australian fires as well as the global environment.


Subject(s)
Fires , Wildfires , Australia , Ice Cover , Oceans and Seas
8.
PLoS One ; 19(4): e0300346, 2024.
Article in English | MEDLINE | ID: mdl-38656930

ABSTRACT

Across the Western United States, human development into the wildland urban interface (WUI) is contributing to increasing wildfire damage. Given that natural disasters often cause greater harm within socio-economically vulnerable groups, research is needed to explore the potential for disproportionate impacts associated with wildfire. Using Zillow Transaction and Assessment Database (ZTRAX), hereafter "Zillow", real estate data, we explored whether lower-priced structures were more likely to be damaged during the most destructive, recent wildfires in Southern California. Within fire perimeters occurring from 2000-2019, we matched property price data to burned and unburned structures. To be included in the final dataset, fire perimeters had to surround at least 25 burned and 25 unburned structures and have been sold at most seven years before the fire; five fires fit these criteria. We found evidence to support our hypothesis that lower-priced properties were more likely to be damaged, however, the likelihood of damage and the influence of property value significantly varied across individual fire perimeters. When considering fires individually, properties within two 2003 fires-the Cedar and Grand Prix-Old Fires-had statistically significantly decreasing burn damage with increasing property value. Occurring in 2007 and later, the other three fires (Witch-Poomacha, Thomas, and Woolsey) showed no significant relationship between price and damage. Consistent with other studies, topographic position, slope, elevation, and vegetation were also significantly associated with the likelihood of a structure being damaged during the wildfire. Driving time to the nearest fire station and previously identified fire hazard were also significant. Our results suggest that further studies on the extent and reason for disproportionate impacts of wildfire are needed. In the meantime, decision makers should consider allocating wildfire risk mitigation resources-such as fire-fighting and wildfire structural preparedness resources-to more socioeconomically vulnerable neighborhoods.


Subject(s)
Wildfires , California , Humans , Fires
9.
Chemosphere ; 357: 142048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641295

ABSTRACT

The wide application of flexible polyurethane foam (FPUF) poses a giant challenge to human society in terms of fire prevention and environmental pollution. To solve this problem, the lignocellulose-based P-N flame retardant (LFPN) has been developed using mechanochemical methods. It was found that FPUF treated using LFPN exhibited good flame retardancy, but suffered from high smoke generation and toxicity. The hollow dodecahedral ZIF-67 has been used for smoke suppression catalysis, but the agglomeration phenomenon makes it inefficient. Hence, in this study, the adhesive properties of polydopamine (PDA) were utilized to assist the in-situ growth of ZIF-67. The results showed that the total smoke release rate of the treated FPUF was reduced by 40.5%. The toxic gases, such as carbon monoxide (CO), hydrogen cyanide, etc., also showed the same decreasing trend. What's more, the catalytic effect of ZIF-67 itself and the synergistic effect with LFPN gave FPUF great flame retardant and smoke inhibition properties. This novel FPUF provides a new reference for achieving smoke suppression and toxicity reduction.


Subject(s)
Flame Retardants , Polyurethanes , Smoke , Flame Retardants/toxicity , Polyurethanes/chemistry , Indoles/chemistry , Fires/prevention & control , Polymers/chemistry , Air Pollutants/toxicity , Air Pollutants/chemistry , Carbon Monoxide/chemistry , Catalysis , Imidazoles , Zeolites
10.
Waste Manag ; 182: 215-224, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670005

ABSTRACT

Incidents of waste and biofuel fires are common at all stages of the waste recycling chain and have grave implications for business, employees, firefighters, society, and environment. An early detection of waste and biofuel fires in the smouldering stage could save precious lives, resources, and our environment. Existing fire detection methodologies e.g. handheld temperature sensors, IR cameras, gas sensors, and video and satellite-based monitoring techniques have inherent limitations to efficiently detect smouldering fires. An attempt was made to explore the potential of electrical resistivity tomography (ERT) as an alternate tool to address the problem. In the experiments an externally powered resistive wire was employed to initiate the smouldering fire inside the test material (wood pellets, wood shavings, wood fines). Time series of ERT that followed the initiation and development of smouldering were recorded using an automated monitoring instrument setup. The actual geometry of the experimental sample container and electrode setup was integrated in the 3D finite element method (FEM) model grid to perform inverse numerical modelling (inversion) and to develop resistivity tomographic images. The study shows a sharp increase in ratio of resistivity (R/Ro ≥ 50 %) in the test material in the region of smouldering hotspot and demonstrates the potential use of ERT technique for the detection of smouldering hotspots in silos and pile storage of organic material such as wood-based fuels, wood waste, coal, municipal solid waste (MSW), recyclables etc. More research is however required for enabling the use of this technique at the practical scale for different storage conditions.


Subject(s)
Wood , Fires , Recycling/methods , Tomography/methods , Refuse Disposal/methods , Biofuels/analysis
11.
Proc Natl Acad Sci U S A ; 121(18): e2316417121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648477

ABSTRACT

Human actions are causing widespread increases in fire size, frequency, and severity in diverse ecosystems globally. This alteration of fire regimes is considered a threat to numerous animal species, but empirical evidence of how fire regimes are shifting within both threatened species' ranges and protected areas is scarce, particularly at large spatial and temporal scales. We used a big data approach to quantify multidecadal changes in fire regimes in southern Australia from 1980 to 2021, spanning 415 reserves (21.5 million ha) and 129 threatened species' ranges including birds, mammals, reptiles, invertebrates, and frogs. Most reserves and threatened species' ranges within the region have experienced declines in unburnt vegetation (≥30 y without fire), increases in recently burnt vegetation (≤5 y since fire), and increases in fire frequency. The mean percentage of unburnt vegetation within reserves declined from 61 to 36% (1980 to 2021), whereas the mean percentage of recently burnt vegetation increased from 20 to 35%, and mean fire frequency increased by 32%, with the latter two trends primarily driven by the record-breaking 2019 to 2020 fire season. The strongest changes occurred for high-elevation threatened species, and reserves of high elevation, high productivity, and strong rainfall decline, particularly in the southeast of the continent. Our results provide evidence for the widely held but poorly tested assumption that threatened species are experiencing widespread declines in unburnt habitat and increases in fire frequency. This underscores the imperative for developing management strategies that conserve fire-threatened species in an increasingly fiery future.


Subject(s)
Conservation of Natural Resources , Ecosystem , Endangered Species , Fires , Endangered Species/trends , Animals , Australia , Reptiles , Mammals , Humans , Birds/physiology , Biodiversity
12.
J Environ Manage ; 358: 120917, 2024 May.
Article in English | MEDLINE | ID: mdl-38663084

ABSTRACT

Permafrost regions play an important role in global carbon and nitrogen cycling, storing enormous amounts of organic carbon and preserving a delicate balance of nutrient dynamics. However, the increasing frequency and severity of wildfires in these regions pose significant challenges to the stability of these ecosystems. This review examines the effects of fire on chemical, biological, and physical properties of permafrost regions. The physical, chemical, and pedological properties of frozen soil are impacted by fires, leading to changes in soil structure, porosity, and hydrological functioning. The combustion of organic matter during fires releases carbon and nitrogen, contributing to greenhouse gas emissions and nutrient loss. Understanding the interactions between fire severity, ecosystem processes, and the implications for permafrost regions is crucial for predicting the impacts of wildfires and developing effective strategies for ecosystem protection and agricultural productivity in frozen soils. By synthesizing available knowledge and research findings, this review enhances our understanding of fire severity's implications for permafrost ecosystems and offers insights into effective fire management strategies.


Subject(s)
Ecosystem , Permafrost , Soil , Wildfires , Soil/chemistry , Fires , Nitrogen/analysis , Carbon/analysis
13.
J Environ Manage ; 358: 120925, 2024 May.
Article in English | MEDLINE | ID: mdl-38640755

ABSTRACT

Understanding the factors that cause fire is crucial for minimizing the fire risk. In this research, a comprehensive approach was adopted to recognize factors influencing forest fires. Golestan National Park (GNP) was considered as a representative area with a humid climate in this study. Initially, using the Multi-Criteria Evaluation Method, a fire risk map was created by analyzing natural and human factors, and vulnerable areas were identified. Then, the relationship between key elements such as meteorological conditions, Land Surface Temperature (LST), and precipitation, with the occurrence of fire in different years was investigated. CHIRPS and Landsat data were utilized to assess LST changes and precipitation. 23-year changes in fire occurrence areas in GNP were acquired using MODIS products. The results of the data analysis showed that the highest number of fires occurred in forest areas, and in the fire risk prediction map, the extremely high-risk class is completely consistent with the ground truth data. The assigned weights, derived from expert opinions, highlight the substantial significance of elevation, and distance from roads and settlements. Additionally, the effectiveness of the model in providing reliable forecasts for fire risks in GNP is highlighted by the ROC curve with an AUC value of 0.83. Forest fires within GNP exhibit a distinct seasonality, predominantly occurring from July to December. During the warmer months, by coinciding with summer excursions, human activities may contribute to the ignition of fires. In 2013 and 2014, rising fire incidents correlated with elevated temperatures, hinting at a potential connection. GNP fires showed an upward trend with higher monthly LST and a downward trend with increased annual precipitation. The results showed that there is a relationship between LST, precipitation, and the occurrence of fire in GNP. Approximately 176.15 ha of GNP's forest areas have been destroyed by fires over the last two decades. This research demonstrated that there is a dynamic interaction between environmental conditions and fire incidents. By considering these factors, managers and environmental planners can develop effective strategies for managing and preventing forest fire risks.


Subject(s)
Fires , Forests , Risk Assessment , Wildfires , Humans , Temperature
14.
Ecology ; 105(5): e4272, 2024 May.
Article in English | MEDLINE | ID: mdl-38590101

ABSTRACT

Disturbances in tropical forests can have long-lasting ecological impacts, but their manifestations (ecological legacies) in modern forests are uncertain. Many Amazonian forests bear the mark of past soil modifications, species enrichments, and fire events, but the trajectories of ecological legacies from the pre-contact or post-colonial period remain relatively unexplored. We assessed the fire and vegetation history from 15 soil cores ranging from 0 to 10 km from a post-colonial Surinamese archaeological site. We show that (1) fires occurred from 96 bc to recent times and induced significant vegetation change, (2) persistent ecological legacies from pre-contact and post-colonial fire and deforestation practices were mainly within 1 km of the archaeological site, and (3) palm enrichment of Attalea, Oenocarpus and Astrocaryum occurred within 0, 1, and 8 km of the archaeological site, respectively. Our results challenge the notion of spatially extensive and persistent ecological legacies. Instead, our data indicate that the persistence and extent of ecological legacies are dependent on their timing, frequency, type, and intensity. Examining the mechanisms and manifestations of ecological legacies is crucial in assessing forest resilience and Indigenous and local land rights in the highly threatened Amazonian forests.


Subject(s)
Rainforest , Suriname , Fires , Archaeology , Conservation of Natural Resources , Time Factors
15.
Ann Bot ; 133(5-6): 743-756, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38468311

ABSTRACT

BACKGROUND AND AIMS: Little is known about the response of ground layer plant communities to fire in Miombo ecosystems, which is a global blind spot of ecological understanding. We aimed: (1) to assess the impact of three experimentally imposed fire treatments on ground layer species composition and compare it with patterns observed for trees; and (2) to analyse the effect of fire treatments on species richness to assess how responses differ among plant functional groups. METHODS: At a 60-year-long fire experiment in Zambia, we quantified the richness and diversity of ground layer plants in terms of taxa and functional groups across three experimental fire treatments of late dry-season fire, early dry-season fire and fire exclusion. Data were collected in five repeat surveys from the onset of the wet season to the early dry season. KEY RESULTS: Of the 140 ground layer species recorded across the three treatments, fire-maintained treatments contributed most of the richness and diversity, with the least number of unique species found in the no-fire treatment. The early-fire treatment was more similar in composition to the no-fire treatment than to the late-fire treatment. C4 grass and geoxyle richness were highest in the late-fire treatment, and there were no shared sedge species between the late-fire and other treatments. At a plot level, the average richness in the late-fire treatment was twice that of the fire exclusion treatment. CONCLUSIONS: Heterogeneity in fire seasonality and intensity supports diversity of a unique flora by providing a diversity of local environments. African ecosystems face rapid expansion of land- and fire-management schemes for carbon offsetting and sequestration. We demonstrate that analyses of the impacts of such schemes predicated on the tree flora alone are highly likely to underestimate impacts on biodiversity. A research priority must be a new understanding of the Miombo ground layer flora integrated into policy and land management.


Subject(s)
Biodiversity , Ecosystem , Fires , Zambia , Plants , Seasons
16.
Trends Ecol Evol ; 39(5): 424-426, 2024 May.
Article in English | MEDLINE | ID: mdl-38521739

ABSTRACT

Cold temperatures have been posited as a key driver of polyploidy (possession of multiple chromosome sets). However, high temperatures associated with fire, and the indirect impact of post-fire environments in polypoid formation and establishment deserve more attention for a comprehensive understanding of polyploid ecology, evolution, and current distributions.


Subject(s)
Fires , Polyploidy , Biological Evolution , Cold Temperature
17.
Environ Sci Pollut Res Int ; 31(19): 27897-27912, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526716

ABSTRACT

Fire outbreaks in urban complexes are a major safety concern worldwide. Therefore, this study aims to examine the critical factors that influence fire accidents and their interaction mechanisms in urban settings. A (software factors, hardware factors, environmental factors, parties and other factors, SHEL) model is developed to identify 15 risk factors in four categories affecting fire incidents in urban complexes. The Decision-making Trial and Evaluation Laboratory method (DEMATEL) and Interpretive Structural Modeling (ISM) are employed to identify the key factors and their interrelationships, using the evaluation metrics of degree of influence, affected degree, centrality, and hierarchical structure. The results show that lack of safety management rules and regulations (S13), poor security awareness (S1), and uncorrected hidden dangers (S11) are the top three critical factors. Based on the hierarchical structure and centrality values, eight critical paths with the highest impact on fires are identified; for instance, Path 39 (comprising, lack of safety management rules and regulations (S13) → lack of fire training and drills (S12) → insufficient security knowledge (S2) → poor security awareness (S1) → poor sense of security responsibility (S3) → uncorrected hidden danger (S11) → inadequate maintenance of fire-fighting facilities (S14) → Accident), which, among all disaster impact paths, has the highest centrality value of 21.8796 (out of a total of 15 factors and total centrality value of 42.9226; Path 39 involves seven factors, but its centrality value accounts for 50.97% of the total). Finally, based on the factor analysis results, suggestions for fire control measures are provided to prevent fire accidents and ensure the safety of people and property.


Subject(s)
Fires , Cities , Humans , Accidents , Risk Factors , Safety Management , Models, Theoretical
18.
Nature ; 627(8003): 273-274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480962
19.
Ying Yong Sheng Tai Xue Bao ; 35(2): 363-370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523093

ABSTRACT

Surface vegetations are one of the key factors affecting the spread of green space fires. To explore the combustibility of commonly used local surface layer herbaceous species in Beijing, and to provide a reference for the construction and management of urban green space, we comprehensively evaluated the combustibility of Carex giraldiana, Carex breviculis, Liriope spicata, Iris lactea, Iris tectorum, and Buffaloe dactyloides, with the entropy weight method and K-mean cluster analysis based on the principal component analysis method. We measured the combustion characteristics indicators (blade ignition point, combustion time and heat release rate), physical and chemical indicators (leaf moisture content and crude fat content), and biological characteristics indicators (blade thickness and unit load) during the key period of fire prevention. The results showed that blade thickness and ignition point got the highest weight and affected the overall combustibility most. Peak heat release rate and ignition time had the lowest weight and minimal impact on the overall combustibility. The combustibility of the six species followed an order of B. dactyloides > C. breviculmis > L. spicata > C. giraldiana > I. lactea > I. tectorum. Results of the clustering analysis showed that the combustion ability of B. dactyloides, C. breviculmis, and L. spicata were in class Ⅰ, with the strongest combustion ability; C. giraldiana was in class Ⅱ; I. lactea and I. tectorum were in class Ⅲ, with the lowest flammability. As widely used surface vegetations, critical attention should be paid on B. dactyloides, C. breviculmis and L. spicata for fire prevention in winter and spring.


Subject(s)
Fires , Beijing , Hot Temperature , Plant Leaves , Seasons
20.
Ying Yong Sheng Tai Xue Bao ; 35(1): 203-211, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38511457

ABSTRACT

Liangshan Prefecture is one of the three major forest areas in Sichuan Province and one of the three major disaster areas of forest fire. We measured the physicochemical properties and combustion performances of different organs (leaves and branches) of 15 main economic tree species in Liangshan, and analyzed the bioecology characteristics, silviculture characteristics and value characteristics of different tree species. We investigated the fire resistance of different tree species to screen out fire-resistant species suitable for economic forest development in Liangshan Prefecture, and improve the biological fire prevention ability. The seven physicochemical properties and combustion performances indices of 15 tree species showed significant differences. Except for crude ash and lignin, the weights of moisture content, caloric value, ignition point, crude fat, and crude fibre of leaves were higher than those of branches. Crude fibre index of leaves (9.6%) and the crude ash index of branches (9.9%) were the highest weight indices of the two organs, respectively. Based on the fire resistance, we divided all the species into three classes, i.e., class Ⅰ (excellent fire-resistance trees) Juglans regia and Morus alba; class Ⅱ (better fire-resistant trees) Sapium sebiferum, Mangifera indica, Phyllanthus emblica, Eriobotrya japonica, Ligustrum lucidum, Castanea mollissima, and Punica granatum; class Ⅲ (poor fire-resistant trees) Pinus armandii, Illicium simonsii, Morella rubra, Sapindus mukorossi, Olea europaea and Camellia oleifera. J. regia and M. alba had fireproof solid performance and could be used as the preferred species for fireproof economic forest in Liangshan region. It was suggested that to use class Ⅰ to Ⅱ fire-resistant tree species built the main fireproof isolated forest belt, and pay attention to fire prevention after planting class Ⅲ tree species in a large area.


Subject(s)
Fires , Wildfires , Trees , Forests , China
SELECTION OF CITATIONS
SEARCH DETAIL
...